Modeling Clinical Judgment and Implicit Guideline Compliance in the Diagnosisof Melanomas Using Machine Learning

نویسندگان

  • Andrea Sboner
  • Constantin F. Aliferis
چکیده

We explore several machine learning techniques to model clinical decision making of 6 dermatologists in the clinical task of melanoma diagnosis of 177 pigmented skin lesions (76 malignant, 101 benign). In particular we apply Support Vector Machine (SVM) classifiers to model clinician judgments, Markov Blanket and SVM feature selection to eliminate clinical features that are effectively ignored by the dermatologists, and a novel explanation technique whereby regression tree induction is run on the reduced SVM model's output to explain the physicians' implicit patterns of decision making. Our main findings include: (a) clinician judgments can be accurately predicted, (b) subtle decision making rules are revealed enabling the explanation of differences of opinion among physicians, and (c) physician judgment is non-compliant with the diagnostic guidelines that physicians self-report as guiding their decision making.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Modeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques

In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...

متن کامل

Modeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine

In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AMIA ... Annual Symposium proceedings. AMIA Symposium

دوره   شماره 

صفحات  -

تاریخ انتشار 2005